Public Roads

 I JOURNALOF HIGHWAY RESEARCHUBLISHED BY HE BUREAU OF UBLICROADS,
S. DEPARTMENT FCOMMERCE, ASHINGTON

Boundary Channel Bridge, Washington, D. C.

Public Road

A JOURNAL OF HIGHWAY RESEARCI Vol. 26,No. $11 \quad$ December 195

Published Bimonthly

B UREAU OF P UBLIC ROAD Washington 25, D.

Regional Headquarter 870 Market S San Francisco 2, Cali:

DIVISION OFFICES

No. 1. 718 Standard Bldg., Albany 7, N. Y. Connecticut, Maine, Massachusetts, New Ham? shire, New Jersey, New York, Rhode Islam and Vermont.
No. 2. 707 Earles Bldg., Hagerstown, Md.
Delaware, District of Columbia, Marylam Ohio, Pennsylvania, Virginia, and West Vi. ginia.

IN THIS ISSUE

Observed Settlements of Highway Structures Due to Consolidation of Alluvial Clay 217
Second Inter-American Highway Film 224
Traffic Trends on Rural Roads in 1950 225

No. 3. 50 Seventh St., N. E., Atlanta 5, Ga.
Alabama, Florida, Georgia, Mississippi, Nort Carolina, South Carolina, and Tennessee.
No. 4. South Chicago Post Office, Chicago 17, I] Illinois, Indiana, Kentucky, and Michigan.
No. 5. (North). Main Post Office, St. Paul Minn.
Minnesota, North Dakota, South Dakota, an Wisconsin.
No. 5. (South). Federal Office Bldg., Kans: City 6, Mo.
Iowa, Kansas, Missouri, and Nebraska.
No. 6. 502 U. S. Courthouse, Fort Worth 2, Te Arkansas, Louisiana, Oklahoma, and Texas.
No. 7. 870 Market St., San Francisco 2, Cali Arizona, California, Nevada, and Hawaii.

No. 8. 753 Morgan Bldg., Portland 8, Oreg.
Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. T-2, Denve Colo.
Colorado, New Mexico, Utah, and Wyomin. No. 10. Federal Bldg., Juneau, Alaska.

Alaska.

> Public Roads is sold by the Superintendent of Documen, Government Printing Office, Washington 25 , D. C., at $\$ 1$ y year (foreign subscriptions $\$ 1.25$) or 20 cents per single colFree distribution is limited to public officials actually engag in planning or constructing highways, and to instructors ? highway engineering. There are no vacancies in the free lt at present.
> The printing of this publication has been approved by Director of the Bureau of the Budget January 7,19 .

BUREAU OF PUBLIC ROAI
U. S. DEPARTMENT OF COMMERE

Observed Settlements of High̀way Structures Due to Consolidation of Alluvial Clay

BY THE PHYSICAL RESEARCH BRANCH BUREAU OF PUBLIC ROADS

Reported by E. S. BARBER
Highway Engineer

Abstract

Laboratory consolidation tests, coupled hith analysis of field conditions indicated by ubsurface explorations, enable the engineer , anticipate the amount and rate of settleent of embankments and bridges under inreased loads. In this article observed setlements at four locations are correlated hith calculated values obtained from laboraary test results. Actual settlements were ound to be in substantial agreement with he calculated values, the maximum differnce being about 20 percent. Primary conolidation accounted for most of the oberved settlements.

[ABORATORY consolidation tests plus Lanalysis of field conditions indicated by ubsurface explorations are useful in estinating the amount and rate of settlement f embankments or bridges to be expected lue to an increase in applied load. Howver, correlation of such analysis with reorded field displacements is needed, par-
ticularly in evaluating boundary drainage conditions for primary consolidation and in evaluating secondary time-consolidation effects which are independent of boundary drainage conditions.

This paper presents observations of settlements at four different sites along the Potomac River near Washington, D. C., as shown in figure 1, and their correlation with laboratory test results and analysis. Field data were obtained by the Bureau of Public Roads and the District of Columbia Department of Highways, and the tests were made in the Bureau laboratory.

Summary

The total settlements indicated by the field observations were in substantial agreement with the values calculated from laboratory compressibilities. The maximum difference was about 20 percent. Primary consolidation accounted for substantially all

Figure 1.-Location of observed settlements.
of the observed settlements except for the peaty material at one location, where secondary consolidation was quite aporeciable. The rate of consolidation in clay with sand lenses was somewhat more rapid than that calculated for purely vertical consolidation, although much less rapid than would have been derived for free draining lenses.

Test Methods

Consolidation tests were made on undisturbed samples taken from each soil layer by the suggested method of test for consolidation of soil. ${ }^{1}$ Illustrative consolidation test results are given in table 1 and the physical properties of the several soils over which settlements were observed are shown in table 2. Using the data from the consolidation tests, the coefficients of compressibility and consolidation for the loads appropriate to each problem were calculated by the methods shown in figure 2.

Loading intervals of 24 hours were used for obtaining all reduction in thickness values except for the samples from the upper layer of Bridge 8. In the latter instance, the time interval was 96 hours.

Fill on Three Compressible Layers

As part of the road network around the Pentagon, a 35 -foot rolled fill of silty soil was constructed over a tidal flat at the location marked "observed fill" in figure 1.
Samples taken from borings at this location disclosed three layers of compressible soil, as shown in the cross section at the top of figure 3. Therefore, settlement of the embankment was anticipated but it was decided to raise the grade line of the roadway on the embankment at the bridge ends where necessary rather than excavate the soils in layers 1,2 , and 3 of the foundation and thus eliminate the settlement.
Using the coefficients of compressibility and consolidation obtained from consolidation tests, the computed time-settlement curves, shown in figure 3, were drawn before construction started. The points for
${ }^{1}$ Procedures for testing soils, American Society for Testing Materials, 1950 , p. 240.

Table 1.-Illusirative consolidation test results

${ }^{1}$ The fill on the Pentagon network, designated "observed fill" in figure 1.
plotting the curves were calculated from the following formula based on an average vertical permeability and average compressibility:
$t=T \sum m H \sum \frac{H}{m c_{v}}$
in which
$t=$ time in years for a given degree of settlement.
$T=$ time factor.
$m=$ coefficient of compressibility.
$c_{v}=$ coefficient of consolidation.
$H=$ thickness of each layer.
The calculations for the two summations are shown in table 3. The time factors T are taken from table 4 . In table 3, 2.69 feet is the maximum calculated settlement in the three layers due to the weight of the 35 -foot fill. Thus, for 50 -percent consolidation, or 1.34 feet, and drainage from two faces, the time would be, using equation (1), $t=0.05 \times 0.625 \times 6,130=191.6$ days $=0.52$ year.

Similar calculations were made for other percentages of consolidation to obtain data for plotting the computed curve for two drainage faces in figure 3. Adjustments were made for the period of load increase indicated at the top of the graphs in figure 3.

A similar procedure was followed in deriving the computed curve for one drainage face. For these computations the ratio of the pressure at the drainage face to presure at the impervious face was assumed as 1.00 .

The observed settlement curve of figure 3 was drawn by plotting changes in elevation of the settlement plate. The settlement plate was placed during construction of the embankment and consisted of a steel plate 24 inches square to which was screwed a stem consisting of a 1 -inch diameter pipe. The plate and first section of stem were placed 2 feet below the original ground surface and a 2-inch guard pipe was placed around the stem. Additional sections of stem and guard were added as the height of the fill increased. After completion of the
fill, the guard pipe was capped. Elevation readings referred to a permanent bench mark were taken on the stem at regular time intervals and the fill settlement calculated.

A comparison in figure 3 of observed settlements with those calculated for two drainage faces indicates that the fill may have acted initially as a drain but that its resistance to flow of water from the foundation increased as it became saturated.

Consideration of degree of consolidation in each layer as affected by proximity to a drainage face 2 would make considerable difference in time calculations, but less difference than the uncertainty of boundary drainage. The section of curve designated in figure 3 as "secondary rate" will be discussed subsequently.

Calculations based on samples taken at two other locations on the same fill indicate ultimate settlements of 0.81 and 3.62 feet although the observed settlements were both approximately the same as shown in figure 3. This shows that the subsoil was more uniform with respect to support of a 35 -foot fill than indicated by the samples obtained from the three individual borings.

Elevations taken on temporary stakes and the pavement at the top of the fill

[^0]showed tne same settlement as the plate be low the fill, indicating that there was n consolidation within the fill. A similar red ord of no movement within a rolled fill wa previously reported in Public Roads. ${ }^{3}$

Displacements at the Boundary Channel Bridge

In 1931, as part of the Memorial Higl way to Mount Vernon, a bridge was bui over Boundary Channel connecting the rive bank to Columbia Island, newly formed b hydraulic fill. The sketch at the top figure 4 shows the deep layer of organ clay under the Boundary Channel Bridg and the adjacent fill. The bridge, consis ing of twin cantilevers with a small su: pended span, was supported on piles to ad quate bearing and did not settle. Howeve the bridge buckled due to the lateral pre sure transmitted from the adjacent f. placed on the clay. A bench mark was si in the fill on June 1, 1934. The time, mea ured from the mean time of placement the fill almost 4 years previous, was plott ϵ against the observed fill settlement as show in figure 4. The primary consolidation rel: tion for one-dimensional drainage, as give in table 4 for two drainage faces, was a justed in scale to fit the plot of fill settleme] as closely as possible, and the fitted theoret cal curve, shown in figure 4, was found k successive trials.

A record of the fill settlement betwee June 24, 1932, and June 1, 1934, was subs quently found. This record, as shown : figure 4, agreed with the fitted theoretic curve indicating that the settlement w: due to primary consolidation. This se tlement due to consolidation is addition to any that took place due to lateral di placement at the time of placing the fill.

The discrepancy between the fitted the retical curve and the actual fill settlemey after 10 years is due to the 5 -percent los increase caused by the addition of 2 feet fill material, which was necessary to mai tain a satisfactory riding surface.

Table 5 shows the consolidation prope ties of samples of clay taken from borins

[^1]Table 2.-Properties of alluvial clays

	Pentagon fill			Old Boundary Channel Bridge, average	Bridge 8, Pentagon network		New 14th St. Bridge, lower layer
	Layer	Layer	$\begin{gathered} \text { Layer } \\ \hline \end{gathered}$		Upper layer	Lower layer	
Percentage passing:							
No. 10 sieve....	100 99	100 94	100 98	100 99	74 72		100 87
No. 200 sieve.	88	70	75	85	59	65	71
0.005 mm .	47	25	45	30	27	22	32
Liquid limit.	56	120	33	51	61	23	58
Plastic limit.	18	24	16	13	13	6	26
Coefficient of consolidation, ft . sq. per day.	0.14	0.24	0.10	0.28	0.17	0.46	0.04
Compressibility, sq. ft. per kip.	0.043	0.090	0.0088	0.043	0.030	0.006	0.015

ade at the site of the Boundary Channel ridge. The variations in the coefficients : consolidation for the samples indicate me sandy strata for which the continuity ad extent could not be determined. Condering the pressure of 2.7 kips per square ot, due to the weight of granular fill on le 65 -foot layer of organic clay, the 7.0 -foot ttlement $(4.8+2.2)$ indicated in figure 4 ould require a compressibility of 0.040 hich compares well with the 0.043 averge of the laboratory test results shown in ble 5. Assuming vertical drainage only, le settlement record indicates a coefficient : consolidation c_{v} of 0.28 foot squared per iy. This agrees with the average \boldsymbol{c}_{v} shown table 5. However, the weighted average rtical c_{v} is calculated as follows:

$$
c_{v}=\frac{1}{\text { avg. } m \times \operatorname{avg} \cdot \frac{1}{c_{v} m}}=\frac{1}{0.043 \times 229}=
$$

0.10 foot squared per day.
his value is so low as to indicate some latal drainage which could not be evaluated om the data available before the recordg of field settlements.
The similarity of the curves for pier rotaon and fill settlement in figure 4 suggests lat the lateral movement of the piers toard each other is controlled by the lateral insolidation of the clay between the pile coups. Struts placed between the piers slow water in August 1945 have had no pparent effect on the rotation of the piers.

Secondary Consolidation

The foregoing calculations have assumed rimary consolidation based on soil permejility and location of drainage boundaries. aboratory time-consolidation records often dicate that primary consolidation is folwed by a secondary consolidation characrized by an approximately linear relaon between thickness change and the logathm of time. The time for secondary conlidation is assumed to be independent of le location of drainage boundaries and apears to be unimportant until the primary msolidation has slowed down so that its te is equal to the secondary rate, wherepon the secondary rate controls.
Predicted rate of secondary consolidation, ased on a projected linear relation between me from 1 to 24 hours and thickness lange of samples in the laboratory, is 10wn between 7 and 9 years in figure 3, nd between 16 and 20 years in figure 4. he fact that the rate of observed moveent is considerably greater than the secidary rate indicates that primary consollation is still predominant.
Evidence of more important secondary onsolidation was found at Bridge 8, a grade paration on the Pentagon road network, i a silty clay layer, which was peaty in the pper portion as indicated by the profile figure 5 . To support wing walls at

Figure 2.-Plot of consolidation test results: third layer of Pentagon fill.
elevation 25, piles were driven through 15 feet of rolled fill and 10 feet of dump fill into the clay. Due to the resistance to driving built up in the fill, the piles did not reach the sand and gravel below the clay. When fill was placed around the walls, settlements were observed as shown in figure 5.

In analyzing the record, the observed settlement values were adjusted to eliminate the settlement due to the October 1942 fill, leaving primarily the settlement due to the August 1942 fill. A curve for primary consolidation for simple vertical drainage was fitted to the adjusted curve. As shown in figure 5 , the fit was very good up to 8 months or 90 percent of the indicated primary consolidation.

The thickness change of the laboratory samples of the peaty clay plotted against
logarithm of time was linear from 1 to 96 hours and showed a secondary settlement per logarithmic cycle of 20 percent of the total for each load increment. If this secondary consolidation is assumed to start at 8 months, it would account for an additional settlement at 80 months of 20 percent of the indicated primary settlement or $0.2 \times 0.71=0.14$ foot. The observed difference between the adjusted observation and the fitted primary consolidation at 80 months is $0.96-0.71$ or 0.25 foot. The excess ($0.25-0.14=0.11$) may be due to the secondary consolidation from the fill placed in January 1942. It should be noted that the record of observed settlement is concave upward, indicating that the linear relation shown up to 4 days in the laboratory is not maintained up to 80 months.

ROLLED FILL
OF SILTY SOIL
123 pct

SANDY GRAVEL

Figure 3.-Settlement of fill on Pentagon network.

Abutment of New Fourteenth Street Bridge

The north abutment of the new Fourteenth Street Bridge over the Potomac River at Washington was supported on piles driven to good bearing according to piledriving formulas and short-time loading tests. Despite the fact that borings showed soft organic clay below the piles, the design was approved because no trouble had been experienced with the old bridge, which is situated nearby on a similar foundation. Subsequent investigation disclosed that the old abutment had settled 11 inches but without damaging the simply supported truss span. The presence of the settlement was obscured by the general settlement of the adjacent reclaimed marsh and the use of the abutment as a bench mark. An equal settlement could not be tolerated on the new bridge with continuous plate-girder spans. When the new abutment had settled 18 inches at the fill end of the wing walls and 2 inches at the bridge seat, it was decided to underpin the structure with steel piles driven to sand and gravel below the soft clay. An important factor in making this decision was the fact that the bridge seat had also moved 3 inches toward the fill.

The abutment, as shown at the top of figure 6, was built above the original ground
and the rolled fill placed, the middle of the filling period being in February 1949. Four months later, continuous observations of settlement were started at the bridge seat and at the opposite end of the wing wall. The fill and the wing wall settled together due to the compression of both the upper (elevation +7 to -40) and lower (elevation -40 to -80) compressible soil layers. This settlement is shown by the solid portion of the lower curve in figure 6. The settlement of the bridge seat was due primarily to the consolidation of the lower layer, to which the piling was driven; there was no fill directly above the area under the bridge seat. The solid portion of the upper curve in figure 6 , obtained by plotting settlement of the bridge seat against the square root of time, is linear except for the re-
bound due to excavation for underpinnit which started 10 months after construction

Calculations from laboratory tests samples taken from borings showed that $t=$ total settlement due to consolidation of t lower layer caused by the load from the : and abutment would be 8 inches under t bridge seat and 14 under the wing-wall er
The settlement in the upper soil-lay under the end of the wing wall was calc lated by subtracting $14 / 8$ of the observ bridge seat settlements from the observi wall settlements. The calculated settment as related to time is shown as the so portion of the center curve of figure 6 . theoretical primary curve for one dimesional consolidation was fitted to the calclated curve for the upper layer. The ptions of the theoretical curve that extend 1 .

Table 3.-Time-consolidation of three-layer system

Layer	$\begin{gathered} \text { Thickness } \\ \hline \end{gathered}$	Coefficient of compressibility m	Coefficient of consolidation co	$m H$	$\frac{H}{m c_{v}}$	Settlement under 4.3 kips per sq. $\mathrm{ft}^{1}{ }^{1}$ (4.3 mH)
1.	Feet $\begin{aligned} & 3 \\ & 5 \\ & 5 \end{aligned}$	$\begin{gathered} \text { Sq. ft./kip } \\ 0.0434 \\ .0902 \\ .0088 \end{gathered}$	$\begin{gathered} \text { Ft. } 8 q . / d a y \\ 0.14 \\ .24 \\ .105 \end{gathered}$	$\begin{array}{r} 0.130 \\ .451 \\ .044 \end{array}$	$\begin{array}{r} 490 \\ 230 \\ 5,410 \end{array}$	Feet 0.56 1.94 .19
Total . .	13			.625	6,130	2.69

${ }^{1} 4.3$ kips per square foot is approximately the load applied to the three layers by the rolled fill, 35 it high, with a density of 123 pounds per cubic foot.

Id the calculated values are shown by the shed lines on the middle curve of figure 6. When the underpinning was complete, the vement of the wing wall stopped but the continued to settle. By adding $14 / 8$ of : projected bridge seat settlement to the ied primary consolidation curve for the per soil layer, a predicted curve for fill tlement was derived and is shown as the shed extension of the lower curve in fig36. A check observation made 24 months er construction and plotted in figure 6 jws excellent agreement between the comted and the observed fill settlement.
3ased on the 8-inch settlement of the dge seat calculated from test results on : lower layer, 25 percent of primary conidation occurred in 6 months, indicating coefficient of consolidation of 0.11 foot lared per day based on vertical consolidan. As shown in table 2, the average labitory value is 0.04 , showing that the sand ses had appreciable effect in accelerat; the settlement.

Table 4.-Effect of boundaries on time-consolidation

	Degree of consolidation								
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Time Factor $T=\frac{e_{v t}}{H^{2}}$									
Ratio of pressure at drainage face to pressure at impervious face:									
.2...	0.049	- 0.073	-	0.217 .186		0.38 .35	0.50	0.66 .63	0.95 .92
. 6	. 016	. 056	+ 106	. 1484	.24 .22	.33 .31	. 44	.60 .58	. 88
. 8	. 010	. 036	. 079	. 134	. 20	. 29	. 41	. 58	. 88
1.0	. 008	. 031	+ 071	. 126	. 20	. 29	. 40	. 56	. 85
${ }_{2}^{2}$.	. 0005	. 024	. 050	. 095	. 16	. 24	. 38	. 54	$.83$
3	. 004	. 016	. 041	. 082	. 14	. 22	. 34	. 50	. 79
10.	. 003	. 013	. 034	. 069	. 12	.20 .18	.32 .30	. 48	. 77
Infinity	. 002	. 009	. 024	. 048	. 09	. 16	. 28	. 44	. 73
Two drainage faces.	. 002	. 008	. 018	. 031	. 05	. 07	. 10	. 14	. 21
Time Factor $T=\frac{c o t}{D^{2}}$									
Ratio of well diameter to effective spacing D :									
$0.01,$. 046	. 104	. 167	..24	$\begin{array}{r}.33 \\ .25 \\ \hline\end{array}$. 44		. 78	
	. 014	. 037	. 064	. 096	. 132	. 178	. 24	. 32	. 44
	. 006	. 019	. 035	. 054	. 077	. 105	. 14	. 19	. 29

(38

Figure 4.-Fill settlement and pier rotation at Boundary Channel Bridge.

Figure 5.-Settlement of north-east wing wall, Bridge 8 , Pentagon network.

Table 5.-Consolidation properties of clay at Boundary Channel Bridge

Sample	Coefficient of consolidation $c o$	$\underset{m}{\text { Compressibility }}$	$\frac{1}{c_{v} m}$
$\begin{aligned} & 3 \mathrm{~A} . \\ & 3 \mathrm{~B} \\ & 4 \ldots \\ & 5 \ldots \\ & 6 \ldots \\ & 11 . \\ & 12 . . \end{aligned}$	$\begin{gathered} \text { Ft. sq./day } \\ 0.35 \\ .03 \\ .28 \\ .07 \\ .14 \\ .08 \\ 1 \end{gathered}$	$\begin{gathered} \text { Sq. ft./kip } \\ 0.049 \\ .059 \\ .046 \\ .033 \\ .046 \\ .050 \\ .020 \end{gathered}$	58 566 78 430 155 250 50
Total Average.	$\begin{array}{r} 1.95 \\ .28 \end{array}$	$\begin{array}{r} .303 \\ .043 \end{array}$	1,587 229

Figure 6.-Settlement at north abutment of new Fourteenth Street Bridge.

Second Inter-American Highhway Film

Inter-Americain Highway Report - Part 11, Central America and Panama, a motion picture produced by the Bureau of Public Roads, is now available for lending to interested organizations. The 16 -millimeter sound and color film, with a running time of 62 minutes, shows the present condition of the southerly 1,600 miles of the Inter-American Highway extending from the Guate-mala-Mexico boundary through the Central American Republics of Guatemala, El Salvador, Honduras, Nicaragua, and Costa Rica and thence through Panama to Panama City. Inter-American Highway ReportPart I, Mexico, covering the northern 1,700 miles of the highway, was announced in Public Roads, vol. 26, No. 10, October 1951.

Inter-American Highway Report-Part II is a study in rich, colorful, and vivid contrasts. Portions of the route are in splendid condition. On others no work has been
done and the cars of the motion-picture men had to be dragged across muddy quagmires and through deep river fords. There are modern, bustling capital cities to compare with primitive rural villages, ox carts to contrast with present-day motor-vehicle traffic, handicrafts which hark back to the earliest times side by side with twentiethcentury industrial plants, and an everchanging kaleidoscope of beautiful scenery, historic structures, ancient ruins and Indian temples, and beautiful cathedrals.

Animated charts show the bypass around the uncompleted section in northern Guatemala as well as the steamship journey on the bypass route from Costa Rica to Panama. Animated maps are flashed upon the screen at the conclusion of the pictures for each country. These maps locate the capitals and give the location and mileage of the passable and impassable sections.

Sections of modern highway, up-to-did bridges spanning wide rivers, garages, f ing stations, haciendas, hotels, and all 1 other attributes of a main route, which w some day make touring through Cent America a must for the motorist, appe The picture summarizes the present con tion of this great thoroughfare-a unit the greater Pan American Highway wh will some day join North and South Ame ca-and gives an accurate appraisal of work that still remains to be done before will be possible for the casual motoristo essay the journey over the entire route.

Inter-American Highway Report - P II, Central America and Panama, may borrowed by any responsible organizati without cost except for the nominal tra portation charges, by writing to the Vis il Education Branch, Bureau of Public Roas Washington $25, \mathrm{D} . \mathrm{C}$.

Iraffic Trends on Rurral Roads in 1950

Y THE HIGHW AY TRANSPORT RESEARCH BRANCH UREAU OF PUBLIC ROADS

Reported by THOMAS B. DIMMICK, Head, Current Data Analysis Unit

Total travel on rural roads in 1950 broke all records, exceeding the 1949 previous high by 9 percent and the 1941 prewar peak by 38 percent. On the 350,000 miles of main rural roads in the United States, travel in 1950 was over 174 billion vehicle-miles, of which 76 percent was by passenger cars, 1 percent by busses, and 23 percent by freight-carrying vehicles.

Trucks and combinations hauled 36 percent more ton-mileage of freight in 1950 than in 1949 and 106 percent more than in 1941, the increase resulting largely from greater use of heavier vehicles. Truck combination travel was 33 percent higher than in 1949 and 145 percent higher than in 1941. Comparable figures for single-unit trucks were 12 and 43 percent. The average carried load for all trucks and combinations in 1950 was 10 percent above the average in 1949 and 55 percent above that in 1941.

In 1950 almost 7 percent of all trucks and combinations exceeded a State legal weight limit, and 19 percent of the combinations were illegally overloaded in some particular. In comparison with 1949, the percentage of overweight vehicles for 1950 increased in all regions except in the South Atlantic States.

IIOTOR-VEHICLE TRAVEL broke all previous records in 1950 for the fifth insecutive year. The 1950 traffic on all aral roads was almost 9 percent higher ian in 1949, 18 percent higher than in

1948, 26 percent higher than in 1947, almost 38 percent higher than in 1946, and slightly more than 38 percent higher than the 1941 prewar peak. Geographically, the increases over 1949 ranged from 7 percent
in the western States to 8 percent in the eastern States and 10 percent in the central States. The largest increase over 1949 in any of the United States census regions ${ }^{1}$ was 15 percent in the East South Central region. The smallest increase was 4 percent in the Pacific region. Records from about 900 automatic traffic recorders, operated continuously throughout the year at permanent stations on main and local roads in all States, were used generally to establish these trends. More extensive traffic surveys, made by a number of States, yielded valuable information concerning the total volume of rural traffic within their boundaries. Consideration has been given to all such available data in this analysis. Where States have prepared and submitted vehiclemile travel estimates of their own, these have been employed rather than estimates made by applying trend factors.

[^2]

Figure 1.-Travel on all rural roads in 1941, 1943, 1949, and 1950, by months.

The variation in average daily travel on rural roads by months in the three main geographic divisions and in the United States as a whole is illustrated in figure 1 for the years $1950,1949,1943$, and 1941, the latter being the prewar peak year. Travel in each month of 1950 in the eastern and central regions and in the United States as a whole was well above that of the corresponding month of the earlier years. The western region showed a slight decrease in January from 1949 to 1950.

Summer travel constituted a greater portion of the annual travel in 1950 than in any recent year. In the last two prewar years (1940 and 1941) the average daily traffic in July and August was 23 percent above the average daily traffic for the year. During the war this seasonal travel was reduced drastically, the average daily traffic in July and August being only 13 percent above the annual average in 1942 and 1943. Not until 1949 did vacation and other summer driving form as large a proportion of the year's travel as in the prewar years. In 1950 the average daily traffic on rural roads in July and August was slightly more than 24 percent above the annual average, a percentage even higher than in 1940 and 1941.

Source of Information

The large number of automatic traffic recorders operated on the rural roads of each State give a good indication of the trend of total traffic on those highways but provide no indication of the classification of vehicles by type, weight, or other characteristics. During certain prewar years, generally 1936 or 1937, nearly every State conducted a comprehensive survey of traffic in which all vehicles counted were classified by type. At the same time a large number of trucks and truck combinations were stopped and information recorded concerning their weight, dimensions, and other important features.

In order to determine the wartime trend in weights, dimensions, and other characteristics of commercial vehicles, a brief check survey was made in the summer of 1942 at certain typical stations in most States. From strictly comparable information gathered in the two surveys, trends were calculated which were used to determine the changes in traffic and vehicle characteristics that had taken place since the comprehensive survey was made. Since 1942. check surveys have been made annually. Most States have participated in these each year and all have participated at some time. ${ }^{2}$ Forty-five States conducted such surveys in 1950.

Classification counts made in numerous States, in addition to those made at the weight stations, added valuable information

[^3]Table 1.-Survey period, number of stations operated, number of vehicles counted and number weighed in each State in the special veight surveys, summer of 1950

${ }^{1}$ Passenger cars not counted; figure given is an estimate based on data from other reports.
concerning vehicle-type proportions. In a few States greatly expanded loadometer surveys have furnished more reliable data concerning vehicle types and weights than can be obtained from the trend data alone, and these have been used in the analysis when available.

1950 Summer Loadometer Survt
The stations used in these check surve t were selected initially to give a represent tive cross section of traffic on main ru? roads. They were operated for one or mc 8 -hour periods on a weekday, generally fri
her 6 a. m. to 2 p. m., or from $2 \mathrm{p} . \mathrm{m}$. to p. m. All traffic passing through the stains during the period was counted and ssified into the following categories: Lopassenger cars; foreign (out-of-State) ssenger cars; panel and pick-up trucks; ${ }^{3}$ ser two-axle, four-tire trucks; two-axle, -tire trucks; three-axle trucks; truckctor and semitrailer combinations; truck d trailer combinations or truck-tractor nitrailer and trailer combinations; and sses. The combination-type vehicles were rther subdivided according to the number axles of each. ${ }^{4}$
Most of the weight stations were operated ring July, August, and September. The rvey period, number of stations operated, mber of vehicles counted, and number ighed are shown for each State in table More than 1.38 million vehicles were inted at all stations during the period of e survey. Slightly more than one-fifth of ese were freight-carrying vehicles, of ich almost 40 percent were weighed.
Wherever traffic volume permitted, every 1ck and truck combination was stopped d weighed. Where this procedure was practicable all of the less common types re weighed and the common vehicle types re weighed in sufficient numbers to estabh their characteristics from the sample. le type of vehicle, whether loaded or ipty, the number of axles, and the weight each axle were recorded. The axleacing and total wheelbase length of the avier vehicles ${ }^{5}$ were measured, and the mmodity carried and the type of opera-m-private or for-hire-were recorded. issenger cars and busses were counted but t stopped for weighing.

Prewar Traffic Trend Increased

Figure 2 shows in chart form the vehiclelieage of travel on all rural roads, by pes, for each year from 1936 to 1950, in-

Sincle-unit trucks with a carrying capacity of less in $11 / 2$ tons.
In this article, the term "truck" is used to indicate single-unit vehicle; "truck combination" to indiie truck-tractor semitrailer (with or without full (iler.) and truck with full trailer; and "trucks and
ick combinations" or "trucks and combinations" to ick combinations" or "trucks and combinations" to licate all of these vehicles together. Trucks and truck combinations weighing 13 tons or re, or having an axle weighing 18,000 pounds or
re.

Figure 2.-Travel on all rural roads, 1936-50, by classes of vehicles.
clusive. ${ }^{6}$ It is apparent that the effect of the drastic restrictions of travel during the war period, 1942-45, caused but a temporary dip in traffic growth and that the 1950 vehiclemileage was as high as would have been estimated by any rational projection of the prewar trend. A straight line from the top of the bar for 1936 to the top of the bar for 1950 passes through the top of the bar for
"In a similar figure in Traffe trends on rural roads
in 1949 , PuBLIC RoADS, vol. 26 , No. 5 , Dec. 1950 , the
bar for 1938 was shorter than it should have been. The current figure is correctly plotted.

1937, cuts below the top of the bar for 1941, and falls well above the tops of the bars for all other years.
Travel by trucks and truck combinations increased in a manner very similar to that observed for all vehicles. For truck combinations alone, the 1936-50 line lies above the tops of all bars from 1937 to 1949 , inclusive, thus showing an accelerating upward trend in the travel by these heavier vehicles. This is emphasized by other trend data, given in other portions of this report.

Table 2.-Ratio of 1950 traffic on main rural roads to corresponding traffic in 1949^{1}

Vehicle type	Eastern regions				Central regions					Western regions			$\begin{aligned} & \text { United } \\ & \text { States } \\ & \text { average } \end{aligned}$
	New England	Middle Atlantic	South Atlantic	Average	East North Central	East South Central	West North Central	$\begin{gathered} \text { West } \\ \text { South } \\ \text { Central } \end{gathered}$	$\begin{aligned} & \text { A ver- } \\ & \text { age } \end{aligned}$	$\begin{aligned} & \text { Moun- } \\ & \text { tain } \end{aligned}$	Pacific	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	
Passenger cars:													
Foreign....	1.04	1.06	1.11	1.08	1.19	1.16	1.10	1.13	1.16	1.08	1.02	1.06	1.06
All passenger cars	1.06	1.04	1.11	1.07									
Trucks and combinations:													
Single-unit trucks...	1.16 1.32	1.09 1.23	1.10 1.34	1.31	1.08	1.16	1.09	1.12	1.12 1.32	1.10 1.28	1.13 1.36	1.12 1.35	${ }_{1}^{1.12}$
All trucks and combinations	1.19	1.14	1.16	1.16	1.19	1.20	1.10	1.14	1.18	1.13	1.19	1.19	1.18
Busses.	1.03	. 78	. 97	. 91	1.17	1.02	1.04	. 99	1.06	1.00	1.01	1.01	. 99
All vehicles	1.08	1.06	1.12	1.09	1.09	1.14	1.08	1.13	1.11	1.13	1.06	1.07	1.09

${ }^{1}$ The ratios for "all vehicles" are based on year-around automatic recorder data, while those for the individual vehicle types are based principally on summer counts.

Table 3.-Percentage distribution of travel, by vehicle type and by type of operation, on main rural roads in the summer of 1950

Vehicle type	Eastern regions				Central regions					Western regions			United States average	U. S. percentage distribution of trucks and truck combinations by type of operation		
	New England	Middle Atlantic	South Atlantic	A verage	East North Central	East South Cen- tral	West North Central	West South Central	Average	$\begin{aligned} & \text { Moun- } \\ & \text { tain } \end{aligned}$	Pacific	$\begin{aligned} & \text { A ver- } \\ & \text { age } \end{aligned}$				
														Total	Private	Forhire
Passenger cars:																
Local.	55.41 24.39	61.97 16.17	56.66 18.83	58.66 18.51	54.73 22.64	43.88 22.76	59.04 15.64	58.74 14.99	55.17 19.19	43.58 32.75	70.97 10.33	60.66 18.77	$\begin{aligned} & 57.26 \\ & 18.89 \end{aligned}$			
All passenger cars.	79.80	78.14	75.49	77.17	77.37	66.64	74.68	73.73	74.36	76.33	81.30	79.43	76.15			
Single-unit trucks:																
Panel and pick-up.	4.68 1.36	4.91 .88	7.52 .51	6.05 .78	5.19 .49	11.93 .51	8.10 .77	10.56 .33	8.12 .51	9.73 .66	4.54 .79	6.49 . .74	7.16 .64	31.35 2.79	42.38 3.70	1.91 .37
Other 2-axle, 6-tire	8.04	7.82	7.46	7.69	6.48	12.22	9.21	7.19	8.08	6.22	4.53	5.17	7.45	32.63	36.72	21.68
3-axle 32	. 32	. 40	. 36	. 40	- 38	. 28	. 17	. 81	. 45	. 72	. 62	. 38	1.68	1.54	2.02
All single-unit trucks.	14.40	13.93	15.89	14.88	12.56	25.04	18.36	18.25	17.02	17.06	10.58	13.02	15.63	68.45	84.34	25.98
Truck-tractor and semitrailer combinations:																
3 -axle 4 -axle	4.27 .27	5.78 1.33	5.01 2.34	5.22 1.64	5.17 3.24	5.53 1.09		4.40 2.41	4.57 2.54	1.87 1.54	.98 1.36	1.31 1.43	4.23 2.05	18.50 8.99	10.16 4.01	40.79 22.31
4-axle 27	1.33 .01	2.34 .01	1.64 .01	5.24 .16	1.09 .02	2.40 .34	2.41 .06	2.54 .16	1.84 1.21	1.36 2.64	1.43 2.10	2.05 .44	8.99 1.94	4.01 .61	22.31 5.49
All truck-tractor and semitrailer combinations.	4.54	.01 7.12	.01 7.36	. 6.87	.16 8.57	6.64	.84 5.87	.06 6.87	7.27	1.21 4.62	4.98	4.84	6.72	29.43	14.78	68.59
Truck and trailer combinations:																
4-axle or less.	. 03	. 02	(1) 02	. 02	. 16		. 25	. 17	. 16	. 27	. 48	. 40	. 16	. 68	. 48	1.21
5-axle....		. 01	(1)	(i) 01	. 46		. 01	. 01	. 18	. 33	. 68	. 55	. 19	. 82	. 19	2.49 1.73
6-axle or more...			(1)	(I)	. 09				. 04	. 26	. 99	. 72	. 14	. 62		
binations.... 03	. 03	. 02	. 03	. 71		. 26	. 18	. 38	. 86	2.15	1.67	. 49	2.12	. 88	5.43
All combinations.	4.57	7.15	7.38	6.90	9.28	6.64	6.13	7.05	7.65	5.48	7.13	6.51	7.21	31.55	15.66	74.02
All trucks and truck combinations.	18.97	21.08	23.27	21.78	21.84	31.68	24.49	25.30	24.67	22.54	17.71	19.53	22.84	100.00	100.00	100.00
Busses	1.23	. 78	1.24	1.05	. 79	1.68	. 83	. 97	. 97	1.13	. 99	1.04	1.01			
All vehicles.	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00			

Less than 0.005 percent.

Travel Increases

The ratio of traffic volumes on main rural roads in 1950 to the corresponding volumes in 1949 is shown in table 2. Highways classified under the term "main" include about 350,000 miles and, in general, are those of the entire State systems. In such States as North Carolina, Pennsylvania, and Virginia, where all or a large part of the ruralroad mileage is under State control, only the mileage in the State primary system is included. The consistent increase in
travel on these main highways by most types of vehicles and in all sections of the country is evident in the table.

Travel by both local and foreign (out-ofState) passenger cars, single-unit trucks, and truck combinations increased in all regions. Travel by busses, however, decreased or remained about the same in four regions, declining slightly for the United States as a whole. In general, travel by out-of-State passenger cars increased more than that by local passenger cars, reflecting a higher rate of increase for tourist travel, which is con-
sistent with the increased percentage for t summer peak, already noted.

The increase in travel by all types freight-carrying vehicles amounted to percent, compared to 7 percent for passe ger cars. Truck registrations increased or 7 percent, and greater use of the register vehicles is therefore indicated. Perhaps t3 most significant fact shown by table 2 s that travel by truck combinations increas much faster than travel by single-uıt trucks, the increase by these heavier vel cles amounting to 33 percent.

Figure 3.-Average veights of londed and of empty trucks and truck combinations in the summers of 1942-50 and a prewar year.
able 4.-Average weights (in pounds) of loaded and empty trucks and truck combinations, by vehicle types, in the summer of 1950

Vehicle type	Eastern regions				Central regions					Western regions			United States average	U. S. average by type of operation	
	New England	Middle Atlantic	South Atlantic	Average	East North Central	EastSouth South	West North Centra	West South Central	Average	$\begin{aligned} & \text { Moun- } \\ & \text { tain- } \end{aligned}$	Pacific	Average			
														Private	For-hire
Average Weights of Loaded Vehicles															
Single-unit trucks:															
Panel and pick-up. Other 2-axle, 4-tire	4,950 6,419	5,356 8,072	4,805 6,436	5,038 7,003	4,822 6,737	$\begin{aligned} & 5,373 \\ & 7 \end{aligned}$	5,105 7,883	7,129 6,720	5,735 7,177	5,154	4,351	4,695 6,148	5,370 6,868	5,367 6,701	5,467
Other 2-axle, 6-tire	14,577	15,581	$\begin{array}{r}6,85 \\ 13,007 \\ \hline 8\end{array}$	14,288	6,737 13,167	14,575	74,883	6,720 13,405	5,717 13,712	7,144 14,184	5,871 12,815	6,148 13,351	6,868 13,853	6,701 13,319	10,419 16,375
3-axle..	29,566	31,246	28,193	29,426	27,291	26,736	26,770	17,252	27,073	32,279	26,552	${ }_{27}^{13,748}$	13,839	13,374	16,375 29,790
Average	11,607	12,540	10,536	11,490	10,505	11,979	10,841	10,131	10,739	10,534	10,219	10,342	10,902	10,118	16,574
Truck combinations:															
Truck-tractor and semitrailer Truck and trailer.	38,666	41,731 57,897	38,175	39,687 48,308	38,888 64,466	35,068	40,495	38,316	38,612	46,859	51,078	49,721	40,557	39,225	41,231
Truck and trailer...........	38,487	57,897 41,802	38,169	43,308 39,699	64,466 40,374	35,068	25,365 39,935	34,497 38,231	54,572 39,257	63,154 49,013	56,069 52,393	$\begin{aligned} & 57,259 \\ & 51,423 \end{aligned}$	56,111 41,511	42,692 39,431	$\begin{aligned} & 62,694 \\ & 42,569 \end{aligned}$
Average, all trucks and combinations.	19,539	24,615	22,233	22,851	25,323	19,217	19,895	20,095	22,009	24,013	29,358	27,526	23,188	16,155	36,938
Average Weights of Empty Vehicles															
Single-unit trucks:															
Panel and pick-up.	4,166	4,329	3,783	3,984											
Other 2-axle, 4-tire	5,095	4,951	5,081	5,012	4,952	5,637	5,743	5,126	5,364	5,108	4,603	4,879	5,128	5,078	7,282
Other 2 -axle, 6-tire 3 -axle	8,506 15,371	8,944 16,903	7,294 13,526	8,170 15,063	7,740 13,731	7,749	7,970	7,952	7 7 7,848	8,111	7,911	8,023	7,979	7,856	8,455
3 -axle Average.	15,371 6,655	16,903 6,976	13,526 5,324	15,063 6,100	13,731 5,880	9,483 5,586	15,469 5,928	16,957 6,046	13,802 5,861	15,377 5,477	13,896 5,757	14,521 5,583	14,406 5,904	14,152 5,640	14,871 8,598
Truck combinations:															
Truck-tractor and semitrailer	20,391	20,348	18,843.	19,656	18,587	17,339	20,586	18,971	18,877	23,833	23,530	23,683	19,555	19,265	19,731
Average.................	20,392	20,369	18,829	19,658	19,447	17,339	20,215	19,035	19,190	24,960	25,338	25,181	20,043	19,364	19,7176 20,483
Average, all trucks and combinations.	9,067	10,422	8,142	9,135	10,147	7,190	8,505	8,650	8,719	8,271	11,183	9,499	8,953	7,135	16,336

Data omitted because of insufficient sample.

Use of Truck Combinations

The percentage of travel by vehicle types in main rural roads in 1950 is given in table

In this table all single-unit trucks are livided into classification types based on the wle and tire arrangements, while the truck :ombinations are classified according to the otal number of axles of the combination. The classification of vehicles into these types las been used only in the last four annual lurveys. It has several advantages over he old "light, medium, and heavy" groupng, particularly in that it provides more
homogeneous groupings and more positive identification of the types. It is regrettable that no direct comparison can be made by vehicle types between the old and the new classifications, or between data collected in 1946 and earlier years with such data collected in 1947 and thereafter, but the convenience and advantages of the new system outweigh the disadvantages caused by the change.
The data in table 3 indicate that in 1950 truck and truck combination travel was more than 20 percent of the total travel in all but the New England and Pacific re-
gions. It was between 20 and 26 percent in all of the remaining regions except the East South Central region, where it was well over 30 percent.
A comparison with the same table in the 1949 report shows that the proportion of trucks was higher in 1950 than in 1949 in every region except the Mountain region, where it remained about the same.

The table indicates that the usage of certain types of freight-carrying vehicles varies in different sections. For instance, the truck and trailer combinations with six or more axles and the truck-tractor and semi-

Figure 4.-Travel on main rural roads, 1936-50, by loaded and by empty trucks and truck combinations.

Table 5.-Comparison of estimated vehicle-miles of travel on main rural roads in 1936, 1941, 1946, 1949, and 1950

Year	All vehicles, vehiclemiles	Passenger cars and busses ${ }^{1}$		All trucks and truck combinations		Single-unit trucks		Truck combinations	
		Percentage of all vehicles	Vehiclemiles	Percentage of all vehicles	Vehiclemiles	Percent- age of all trucks and truck com-binations	Vehiclemiles	Percentage of all trucks and truck com-binations	Vehiclemiles
$1936 \ldots \ldots$ $1941 \ldots$ $1941: 1936$ ratio. $1946 \ldots .$. $1946: 1941$ ratio. $1946: 1986$ ratio. $1949 \ldots \ldots$. 1950.	Millions 88.412 122,505 1.39 124,149 1.01 1.40 159,379 174,349 1.09 1.42 1.97	82.6 80.3 80.47 1.00 78.87 77.2 .98 96 98	$\begin{gathered} \text { Millions } \\ 73,005 \\ 98.320 \\ 1.35 \\ 99,803 \\ 1.02 \\ 1.37 \\ 125.602 \\ 134,528 \\ 1.07 \\ 1.37 \\ 1.84 \end{gathered}$	$\begin{gathered} 17.4 \\ 19.7 \\ 1.13 \\ 19.6 \\ .99 \\ 1.18 \\ 21.2 \\ 22.8 \\ 1.08 \\ 1.16 \\ 1.31 \end{gathered}$	Millions 15,407 24,185 1.57 24,346 1.01 1.58 33,777 39,821 1.18 1.65 2.58	82.1 78.8 $73 .{ }^{.96}$ 73.3 .93 71.99 68.4 .95 .83	$\begin{gathered} \text { Millions } \\ 12,650 \\ 19,057 \\ 1.51 \\ 17,838 \\ .94 \\ 1.41 \\ 24,295 \\ 27,256 \\ 1.12 \\ 1.43 \\ 2.15 \end{gathered}$	$\begin{gathered} 17.9 \\ 21.2 \\ 1.18 \\ 26.7 \\ 1.26 \\ 1.49 \\ 28.1 \\ 31.6 \\ 1.12 \\ 1.49 \\ 1.7 \% \end{gathered}$	Millions 2,757 5,128 1.86 6,508 1.27 2.36 9,482 12,565 1.33 2.45 4.56
Trucks and Truck Combinations in Private Operation ${ }^{2}$									
$1936 \ldots .$. $1949 \ldots .$. $1950 \ldots$ $1950: 1949$ ratio $1950: 1936$ ratio.				$\begin{gathered} 78.8 \\ 77.2 \\ 72.8 \\ .94 \\ .92 \end{gathered}$	$\begin{gathered} 12,140 \\ 26,077 \\ 28,974 \\ 1.11 \\ 2.36 \end{gathered}$	$\begin{aligned} & 86.7 \\ & 91.6 \\ & 89.7 \\ & .98 \\ & 1.03 \end{aligned}$	$\begin{gathered} 10,963 \\ 22,262 \\ 24,438 \\ 1.10 \\ 2.23 \end{gathered}$	$\begin{array}{r} 42.7 \\ 40.2 \\ 36.1 \\ .90 \\ .85 \end{array}$	$\begin{aligned} & 1,177 \\ & 3,815 \\ & 4,536 \\ & 1.19 \\ & 3.85 \end{aligned}$
Trucks and Truck Combinations in For -Hire Operation ${ }^{2}$									
$\begin{array}{r} 1936 \ldots . \\ 1949 \ldots \\ 19 . . . \\ 1950: 1949 \text { ratio. } \\ 1950: 1936 \text { ratio. } \end{array}$				$\begin{aligned} & 21.2 \\ & 22.8 \\ & 2 . .2 \\ & 1.19 \\ & 1.28 \end{aligned}$	$\begin{gathered} 3,267 \\ 7,700 \\ 10,847 \\ 1.41 \\ 3.32 \end{gathered}$	$\begin{gathered} 13.3 \\ 8.4 \\ 10.3 \\ 1.23 \\ .77 \end{gathered}$	$\begin{aligned} & 1,687 \\ & 2,033 \\ & 2,818 \\ & 1.39 \\ & 1.67 \end{aligned}$	$\begin{gathered} 57.3 \\ 59.8 \\ 63.9 \\ 1.07 \\ 1.12 \end{gathered}$	$\begin{aligned} & 1,580 \\ & 5,667 \\ & 8,029 \\ & 1.42 \\ & 5.08 \end{aligned}$

${ }^{1}$ Percentages of total 1950 travel by passenger cars and by busses are reported separately in table 3. The percentages below are percentages of the total number of type of vehicle indicated in the uppermost column head. For example, 86.7 percent of all single-unit trucks in 1936 were in private use.
ages for the light panel and pick-up truck and for the heavy combination-type vehicle Over 42 percent of the privately operate trucks were of the panel and pick-up typ while less than 2 percent of the for-hil vehicles were of this type. On the othe hand, less than 16 percent of the private] operated vehicles were truck combinatiox while 74 percent of the for-hire vehicle were combinations.

Average Weights Increase

The average weights of loaded and empt trucks and truck combinations, separatel and combined, are shown graphically j figure 3 for each year from 1942 to 195 inclusive, and for a prewar year, general 1936 or 1937. The weights of single-un trucks, both loaded and empty, increase each year from the 1936-37 period throug 1945, then decreased somewhat or levele off to an average amount slightly less tha 11,000 pounds for loaded vehicles ar slightly less than 6,000 pounds for empt vehicles. At the same time weights of truc combinations, both loaded and empty, har increased each year during the peric shown. The increase in average weight loaded combinations from the 1936-s period to 1950 was over 55 percent, con pared to 11 percent for single-unit truck

The increase for all loaded trucks ar truck combinations combined was 80 percen
trailer combinations with five or more axles are used far more frequently in the Pacific region than in any other area. Combinations involving trailers are used much less in the East South Central region and in the three eastern regions than in other sections. The use of combination-type vehicles has increased steadily in all regions in the last 5 years, the Nation-wide percentages of total travel being 7.21 in 1950, 5.95 in 1949, 5.84 in 1948, 5.73 in 1947, and 5.26 in 1946.

Private and For-Hire Traffic

In the survey conducted in 1950 information was gathered in most of the participating States concerning the use classification under which each vehicle was being operated. The data were reported separately for private and for-hire vehicles of each type, making possible the calculation of vehicle-mileages, ton-mileages, and other items concerning traffic on the main rural roads by the various types of trucks and truck combinations operated privately and operated for-hire.

In the last two columns of table 3 are shown the percentage distributions of private and for-hire trucks and combinations, by vehicle type. In general the lighter types of vehicles predominate in the private classification and, conversely, the heavier vehicles constitute a much higher proportion of the for-hire vehicles. This difference is especially marked in the percent-

Figure 5.-Average load carried by trucks and truck combinations on main rural roads, 1936-1950.
[t will be noted that the average weight of ;he loaded single-unit trucks was somewhat ess than twice the average weight of the mpty vehicles of this type, while the average weight of the loaded combinations was ust about twice the average weight of the mpty combinations. In the case of the rehicles of both types combined, the loaded vehicles included a higher proportion of ombinations than the empty vehicles, since sombinations are more often loaded, and the iverage weight of the loaded trucks and :ombinations was therefore considerably nore than twice the average weight of the mpty vehicles of both types.
The average weights of the various types f loaded and empty trucks and truck comsinations in the summer of 1950 are shown n table 4 for the different regions. This able brings out clearly the important differences that exist in the weight characterisics of the vehicles in the different groups. It will be noted, for example, that for the United States as a whole, the loaded threeaxle, single-unit trucks weighed about twice as much as the two-axle, six-tire trucks. The latter, in turn, weighed about twice as nuch as the two-axle, four-tire trucks. Similar differences existed throughout the various classifications. On the other hand, the regional differences in average weight for each of the vehicle types that are comnon throughout the country are surprisingly small. The rather low weights of uruck and trailer combinations in the West North Central and West South Central regions indicate a predominance of small, home-made trailers of low capacity.
The average weights of loaded and empty trucks and truck combinations operated prirately and for-hire in the summer of 1950 are shown in the last two columns of table 4. The for-hire vehicles, when compared by types, are generally heavier than those pperated privately, and the average weight of all types of for-hire vehicles, either loaded or empty, is more than twice the average of the privately operated vehicles. [t was shown in table 3 that most of the private vehicles consisted of small single-unit trucks while most of the for-hire vehicles zonsisted of the heavy truck combinations. This decided difference in the distributions of sizes of vehicles in the two operation lasses accounts for the great difference between their average weights.

Truck Travel Increases

Figure 4 shows the estimated vehiclenileage of travel by loaded and empty ingle-unit trucks and truck combinations, separately and combined, on main rural "oads, for each year from 1936 to 1950, inIlusive. This chart demonstrates graphi:ally the steady growth of truck traffic luring the prewar years $1936-41$, the temporary effect of wartime restrictions in the period 1942-45, and the remarkable in-

Figure 6.-Ton-miles carried by trucks and truck combinations on main rural roads, 1936-1950.
creases in truck transportation that have occurred since the end of hostilities in 1945.

Table 5 gives comparisons of the estimated vehicle-mileage of travel by vehicles of different types on all main rural roads in 1936, the earliest year for which comprehensive travel and weight data are available; in 1941, the peak prewar year, 5 years after the beginning of the surveys; in 1946 , 10 years after the beginning of the surveys; and in 1949 and 1950. The ratios of 1950 travel to that of the preceding years indicate that increases for trucks and truck combinations generally were greater than for passenger cars and busses, and that increases for truck combinations were greater than for single-unit trucks. In the 14 years from 1936 to 1950 , passenger-car and bus travel combined increased 84 percent, travel by all trucks and combinations more than doubled, increasing 158 percent, and travel
by truck combinations (considered separately) more than quadrupled, increasing 356 percent.

The lower portion of table 5 gives comparisons of the estimated vehicle-mileage of travel in 1936, 1949, and 1950 by privately operated trucks and truck combinations, and by those operated for-hire. Travel by forhire vehicles increased somewhat more than travel by private vehicles, the 1950:1936 ratio being 3.32 in the case of for-hire vehicles and 2.36 in the case of private vehicles. Most of the increase in for-hire vehicle travel was by truck combinations, there being only a 67 -percent increase in the forhire vehicle-mileage by single-unit trucks compared to a 408-percent increase by combinations. In the case of the private vehicles, on the other hand, there were substantial increases in the vehicle-mileage by both types, the increase in the combinations, how-

Table 6.-Comparison of the estimated percentage of trucks and truck combinations loaded, average carried load, and ton-miles carried on main rural roads in 1936, 1941, 1946, 1949, and 1950.

Year	All trucks and truck combinations			Single-unit trucks			Truck combinations		
	$\begin{aligned} & \text { Per- } \\ & \text { centage } \\ & \text { loaded } \end{aligned}$	Average weight of carried load	$\begin{aligned} & \text { Ton- } \\ & \text { miles } \\ & \text { carried } \end{aligned}$	Percentage loaded	A verage weightof of carried load	Tonmiles carried	$\begin{aligned} & \text { Per- } \\ & \text { centage } \\ & \text { loaded } \end{aligned}$	Average weight of carried load	$\begin{aligned} & \text { Ton- } \\ & \text { miles } \\ & \text { carried } \end{aligned}$
		Tons	Millions		Tons	Millions		Tons	Million8
1936	62.8		28,005	60.7			72.2	6.90	13,747
1941	66.7	3.64	58,737	65.4	2.29	28,487	71.6	8.23	30,250
1941:1936 ratio	1.106	1.26	${ }^{2.10}$	1.08	1.23	${ }^{2.00}$	1.99	1.19	${ }_{41}^{2.20}$
19.46 .	51.7	4.84	60,892	46.4	2.31	19,101	66.2	9.70	41,791
1946:1941 ratio	. 78	1.33	1.04	. 71	1.01	. 67	. 92	1.18	1.38
1946:1986 ratio.	. 82	1.67	2.17	.76	1.24	1.34	. 92	1.41	3.04
1949	51.6	5.11	89,100	46.1	2.29	25,639	65.7	10.19	63,461
1950.	53.9	5.64	121,091	47.2	2.31	29,645	68.5	10.62	91,446
1950:1949 ratio	1.04	1.10	1.36	1.02	1.01	1.16	1.04	1.04	1.44
1950:1941 ratio.	. 81	1.55	2.06	. 72	1.01	1.04	. 96	1.29	3.02
1950:1996 ratio.	. 86	1.94	4.82	. 78	1.24	2.08	. 95	1.54	6.65
Trucks and Truck Combinations in Private Operation									
1936.	60.3	2.20	16,094	59.8	1.71	11,180	65.5	6.37	4,914
1949.	47.6	3.48	43,231	45.3	2.10	21,193	61.2	9.43	22,038
1950.	49.1	3.69	52,509	46.2	2.07	23,370	64.5	9.96	29,139
1950:1949 ratio.	1.03	1.06	1.21	1.02	. 99	1.10	1.05	1.06	1.32
1950:1936 ratio.	. 81	1.68	3.26	. 77	1.21	2.09	. 98	1.56	5.98
Trucks and Truck Combinations in For-hire Operation									
1936.	71.9	5.07		66.4	2.73		77.3	7.23	8,833
19.49.	65.1	9.16	45, 869	55.1	3.97	4,446	68.7	10.65	41,423
1950	66.8	9.46	68,582	55.5	4.01	6,275	70.8	10.97	62,307
1950:1949 ratio.	1.03	1.03	1.50	1.01	1.01	1.41	1.03	1.03	1.50
1950:1986 ratio.	. 93	1.87	5.76	. 84	1.47	2.04	. 92	1.52	7.05

Table 7.-Percentage of vehicle-miles of travel, percentage loaded, average carried load, and percentage of total ton-miles carried by various types of trucks and truck combinations on main rural roads in 1950 compared to that in corresponding months of 1949

Vehicle type	Percentage of ve-hicle-miles of travel		Percentageloaded		Average carried load		Percentage of ton-miles carried	
	1950	1949	1950	1949	1950	1949	1950	1949
Single-unit trucks:					Tons	Tons		
Panel and pick-up.	31.35	31.55	37.4	35.9	0.69	0.64	2.65	2.75
Other 2-axle, 4-tire	2.79	3.46	52.4	49.4	. 93	. 78	. 45	. 50
Other 2-axle, 6 -tire	32.63	35.34	55.9	54.5	3.20	3.17	19.06	23.15
${ }^{3}$-axle All singl	1.68 68.45	1.58 71.93	58.3 47.2	54.8 46.1	7.23 2.31	7.23 2.29	24.32 24.48	2.38 28.78
Truck combinations: Truck-tractor and semitrailer	29.43	26.57		65.8	10.32	9.95	68.87	65.91
Truek and trailer...........	2.42	1.50	62.3	63.4	15.32	14.69	6.65	5.31
All truck combinations	31.55	28.07	68.5	65.7	10.62	10.19	75.52	71.22
All trucks and combinations.	100.00	100.00	53.9	51.6	5.64	5.11	100.00	100.00
Trucks and Truck Combinations in Private Operation								
Single-unit trucks:								
Panel and pick-up.	42.38	40.36	37.0	35.7	0.69	0.63		
Other 2-axle, 6 -tire	36.70 36.72	4.38 39.18	51.7	49.4 54.4	3.83	$\begin{array}{r}\text { 3. } \\ \hline .74 \\ \hline\end{array}$	${ }_{34} .92$	39.28
3-axle.	${ }_{1} 3.54$	1.45	50.8 57.1	${ }_{53.4}$	3.03 6.99	${ }_{7.11}$	34.23 3.40	${ }_{3.33}$
All single-unit trucks	84.34	85.37	46.2	45.3	2.07	2.10	44.51	49.02
Truck combinations:								
Truck-tractor and semitrailer..	14.78	13.85	64.3	61.1	9.88	9.39	51.80	47.98
Truck and trailer......	15.88	. 78	67.8	63.6	11.21	10.08	3.69 55.49	3.00 50.98
All truek combinations					9.96			
All trucks and combinations.	100.00	100.00	49.1	47.6	3.69	3.48	100.00	100.00
Trucks and Truck Combinations in For-Hire Operation]								
Single-unit trucks:								
Panel and pick-up Other 2 -axle, 4 -tire	1.91	1.68 .33	58.8 70.3	48.1	0.65 2.12	1.42 2.76	0.11 .09	0.19 .07
Other 2-axle, 6-tir	21.68	22.36	54.5	55.4	3.99	3.82	7.45	7.94
8-axle......	2.02	2.03	60.8	58.1	7.68	7.52	1.50	1.49
All single-unit trucks	25.98	26.40	55.5	55.1	4.01	3.97	9.15	9.69
Truck combinations:								
Truck-tractor and semitrailer. Truck and trailer	68.59 5.43	69.63 3.97	71.6 59.9	69.0 63.2	10.55 17.34	10.27 17.75	81.93 8.92	82.82 7.49
All truck combinations..	74.02	73.60	70.8	68.7	10.97	10.65	90.85	90.31
All trucks and combinations.	100.00	100.00	66.8	65.1	9.46	9.16	100.00	100.00

ever, being much less than in the case o the for-hire vehicles.

Volume of Highway Freight

Figure 5 gives a comparison of the aver age load carried by single-unit trucks an truck combinations, separately and com bined, in the 15 years that the planning sur veys have been operating. The generi trend of load weights was upward through out the period. The slight decline in th weights of loads carried by single-uni trucks since 1945 has been more than offse by the increased use of combinations and th increased weights of loads carried by veh cles of this type.

Figure 6 shows, for each year from 193 through 1950, the ton-mileage of freigh carried by trucks and truck combinations o main rural roads. The chart demonstrate clearly that truck combinations are tran: porting each year a larger proportion of th total amount of highway freight. In 193 the truck combinations hauled slightly les ton-mileage than the single-unit truck while in 1950 they hauled more than trip. the amount transported by the larger nun ber of lighter vehicles. The rapid rate ' annual increase in total freight carrie which took place in 1946 and 1947 was \mathbf{r} duced somewhat in 1948 and 1949 to a ra 1 of increase more nearly comparable wit that of prewar years. In 1950, howeve defense preparations appear to have bef the cause of a rather startling increase freight ton-mileage, somewhat similar to $t 1$ rapid increase that occurred in 1941.

In table 6 are shown comparisons of th percentage of vehicles carrying loads, tl average carried load, and the ton-milea carried for single-unit trucks and trus combinations, separately and combined, 1950 with corresponding items for othr years, as in table 5. The trend from 19: to 1950 of average weight carried, show graphically in figure 5, and that of the to mileage transported during the same perio shown in figure 6, have already been di cussed.

The percentage of trucks and truck cor binations carrying loads increased notic ably from 1949 to 1950 in all regions exce the West North Central region where slight decrease of this factor was foun In the country as a whole, the percental loaded increased from 51.6 percent in 19 to 53.9 percent in 1950 , an important fa tor in the striking increase in ton-mileag Both for single-unit trucks and for trus combinations, the percentage loaded w higher in 1950 than in 1949, and, in the ca: of truck combinations, was higher than any year since 1945. However, the load! proportion was considerably less for each the two vehicle types than in the prew surveys.

The lower portion of table 6 shows cor parisons of the percentage loaded, avera carried load, and ton-mileage for single-urb
rucks, truck combinations, and the two ypes of vehicles combined, when operated is private and as for-hire vehicles. A coniderably larger percentage of the for-hire ehicles are loaded and the loads carried y these vehicles are much heavier than in he case of the privately operated vehicles. single-unit trucks transport an important lart of the freight moved in privately opersted vehicles, but only a minor part of the reight moved in for-hire vehicles.
The first part of table 7 gives a detailed omparison of the percentage of vehicleniles of travel, percentage of vehicles oaded, average carried load, and percentige of total ton-miles of freight carried by he various types of trucks and truck cominations traveling on main rural roads in .949 and 1950. Many interesting comparions can be made from this table showing he relative importance from a freight-car:ying standpoint of different portions of the raffic stream. In 1950, for instance, while sanel and pick-up trucks traveled more than 31 percent of the vehicle-mileage, they acounted for less than 3 percent of the on-mileage. The truck-tractor and semirailers, on the other hand, traveled about 29 jercent of the vehicle-mileage but carried ilmost 69 percent of the ton-mileage.
From the columns in table 7 showing the jercentage loaded, by types, it can be observed that the percentage of vehicles carying loads tends to increase directly as the ize of the vehicle type, extending from light oanel and pick-up trucks that are loaded 37 percent of the time to the heavy combinations that are loaded about 69 percent of the time.
The lower portion of table 7 shows the same information separately for private and for-hire trucks. A comparison of vehiclemileage percentage with ton-mileage percentage, by operating classes, shows that single-unit trucks, privately operated, traveled over 84 percent of the vehicle-mileage while transporting only about 44 percent of the freight moved in privately operated vehicles. At the same time, for-hire singleunit trucks traveled about 26 percent of the total for-hire vehicle-mileage and carried only about. 9 percent of the total ton-mileage moved by the for-hire vehicles. The heavy vehicle combinations, privately operated, traveled about 16 percent of the total mileage and carried over 55 percent of the freight moved by privately operated vehicles, while the for-hire combinations traveled slightly more than 74 percent of the total vehicle-mileage of all for-hire vehicles and carried almost 91 percent of the freight transported by all vehicles in this class.

Gross Weights Increase Sharply

Figure 7 shows by years, from the prewar years (generally 1936 or 1937) to 1950 , for the United States as a whole, the frequency of gross weights of 30,000 pounds

Figure 7.-Number of heavy gross weights per 1,000 trucks and truck combinations (empties included) in the summers of $1942-50$ and a prewar year.
or more, of 40,000 pounds or more, and 50,000 pounds or more. The chart shows strikingly how the frequency of heavy loads soared upward in 1950, reaching amounts for the various weights considerably above any previous levels. For instance, the frequency of the loads of 30,000 pounds or more was 26 percent higher than in 1949 and almost 30 percent higher than in 1945 , the previous year of highest frequency of such loads. The increase in loads of 50,000 pounds or more was even more startling, the frequency being 61 percent above the 1949 figure and 152 percent above the 1945 figure. These heavy loads were over 19 times as frequent in 1950 as in the prewar year, loads of 40,000 pounds or more were 10 times as frequent, and those of 30,000 pounds or more were over 4 times as frequent as in the 1936-37 period.

The 1950 gross-weight frequency data by vehicle type and region are presented in table 8. No panels, pick-ups, or other twoaxle, four-tire, single-unit trucks were found in the survey weighing as much as 30,000 pounds, so there is no entry for these vehicles in the table, though they are included in the total number of vehicles weighed in computing the frequencies for all trucks and combinations. Heavy gloss weights are much more frequent in the Pacific region than in other parts of the country. In this
region 176 of each 1,000 trucks and truck combinations on the main rural highways in 1950, empties included, weighed 50,000 pounds or more and 289 of each 1,000 weighed 30,000 pounds or more. In the East North Central region, 251 of each 1,000 trucks and truck combinations weighed 30,000 pounds or more-almost as many as in the Pacific region-but only 78 of each 1,000 vehicles weighed 50,000 pounds or more, a frequency less than half of that in the Pacific region for this heavy class of vehicle. The lowest frequency of heavy gross loads was found in the East South Central region where only 7 of each 1,000 weighed 50,000 pounds or more and only 102 of each 1,000 weighed 30,000 pounds or more.

As was pointed out in the discussion of figure 7, the frequencies of heavy gross loads have increased sharply in the Nation as a whole. This increase is not limited to any certain area but is distributed throughout the entire country. Comparing the frequencies of gross weights of 30,000 pounds or more, 40,000 pounds or more, and 50,000 pounds or more found in the 1950 surveys with such frequencies found in 1949, increases are found, without exception, in every region. For instance, in the East South Central region, where heavy gross loads are somewhat infrequent, the fre-

Table 8.-Heavy gross weights per 1,000 loaded and empty trucks and truck combinations on main rural roads, summer of 1950

Vehicle type	Eastern regions				Central regions					Western regions			United States a verage
	$\begin{aligned} & \text { New } \\ & \text { England } \end{aligned}$	Middle Atlantic	South Atlantic	Average	East North Central	East South Central	$\begin{gathered} \text { West } \\ \text { North } \\ \text { Central } \end{gathered}$		Average	Mountain	Pacific	Average	
Number per 1,000 Weighing 30,000 Pounds or More													
Single-unit trucks: 2 -axle, 6 -tire 3 -axle Average	16 280 15	27 284 22	1 327 9	14 305 15	1 303 10	1 236 4	(1) 286 5	1 264 3	1 283 6	3 407 12	(1) 234 16	2 281 14	5 289 10
Truck combinations: Truck-tractor and semitrailer Truck and trailer A verage	521 0 518	606 (2) 606	540 ${ }^{(2)} \mathbf{4} 5$ 539	566 ${ }_{\text {(2) }}{ }^{2}$) 566	575 585 576	473 0 473	571 172 554	522 306 516	$\begin{aligned} & 549 \\ & 491 \\ & 546 \end{aligned}$	$\begin{aligned} & 600 \\ & 743 \\ & 622 \end{aligned}$	$\begin{aligned} & 688 \\ & 710 \\ & 695 \end{aligned}$	$\begin{aligned} & 656 \\ & 717 \\ & 672 \end{aligned}$	$\begin{aligned} & 568 \\ & 622 \\ & 572 \end{aligned}$
Average, all trucks and combinations. Comparative average, $1949 . .$.	137 117	221 191	177 130	189 153	251	102 87	142 139	146 107	170 144	160 118	289 176	233 147	187 148
Number per 1,000 Weighing 40,000 Pounds or More													
Single-unit trucks: 2-axle, 6-tire 3 -axle Average	1 104 3	2 137 4	0 59 2	1 93 3	(1) 13	(1) $\begin{array}{r}0 \\ 4\end{array}$	(1) ${ }^{21}$	0 9 1	(1) $^{24}{ }^{0}$	1 117 4	0 21 1	1 47 3	1 52 52 2
Truck combinations: Truck-tractor and semitrailer . Truck and trailer Average.	315 0 313	387 (2) 388 ${ }^{3}$ 185	298 ${ }^{2}{ }^{2} 29$ 297	337 $\left({ }^{2}\right)$ 337	314 505 329	215 0 215	337 142 328	283 225 281	$\begin{aligned} & 299 \\ & 418 \\ & 304 \end{aligned}$	410 505 425	547 486 529	498 490 496	336 459 345
A verage, all trucks and combinations Comparative average, 1949 .	78 66	$\begin{aligned} & 135 \\ & 120 \end{aligned}$	95 71	109 90	$\begin{aligned} & 140 \\ & 105 \end{aligned}$	$\begin{aligned} & 45 \\ & 36 \end{aligned}$	$\begin{aligned} & 82 \\ & 77 \end{aligned}$	79 54	95 73	106 75	214 121	167 97	110 82
Number per 1,000 Weighing 50,000 Pounds or More													
Single-unit trucks: 2-axle, 6-tire 3 -axle Average	(1) ${ }_{9}^{0}$	0 45 1	0 0 0	$(1)^{18}$	(1) ${ }^{13}$	0 0 0	(${ }^{0}{ }^{6}$	(1) 10	(1) $\begin{array}{r}0 \\ 9\end{array}$	1 20 1	(1) $\begin{array}{r}0 \\ 4\end{array}$	(1) $\begin{array}{r} \\ 8 \\ 1\end{array}$	(1) 12 (1)
Truck combinations: Truck-tractor and semitrailer Truck and trailer A verage	$\begin{array}{r} 99 \\ 0 \\ 98 \end{array}$	${ }_{(2)}^{181}$	${ }^{(2)} 88$	$\begin{gathered} 128 \\ { }_{(2)}^{(2)} \\ 129 \end{gathered}$	158 476 183	35 0 35	176 121 174	119 225 122	137 393 150	$\begin{aligned} & 287 \\ & 439 \\ & 311 \end{aligned}$	$\begin{aligned} & 443 \\ & 424 \\ & 437 \end{aligned}$	$\begin{aligned} & 387 \\ & 427 \\ & 397 \end{aligned}$	$\begin{aligned} & 165 \\ & 412 \\ & 182 \end{aligned}$
A verage, all trucks and combinations.. Comparative average, 1949	$\begin{aligned} & 24 \\ & 15 \end{aligned}$	$\begin{aligned} & 63 \\ & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & 28 \\ & 21 \end{aligned}$	$\begin{aligned} & 41 \\ & 33 \end{aligned}$	$\begin{aligned} & 78 \\ & 48 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 44 \\ & 32 \end{aligned}$	$\begin{aligned} & 34 \\ & 18 \end{aligned}$	$\begin{aligned} & 47 \\ & 29 \end{aligned}$	$\begin{aligned} & 76 \\ & 51 \end{aligned}$	$\begin{array}{r} 176 \\ 99 \end{array}$	$\begin{array}{r} 133 \\ 75 \end{array}$	$\begin{aligned} & 58 \\ & 36 \end{aligned}$

${ }^{1}$ Less than 5 per 10,000 .
${ }^{2}$ Data omitted because of insufficient sample.
quencies of loads of 40,000 pounds or more increased from 36 in 1949 to 45 in 1950; in the Pacific region the loads of 50,000 pounds or more increased from 99 in 1949 to 176 in 1950 for each 1,000 vehicles. The general prevalence of the heavier loads on the highways of all sections of the country gives a partial explanation of the large increase found in the ton-mileage of freight carried in 1950 compared to that carried in 1949.

Frequency of Heavy Axle Loads

Figure 8 shows the frequency of axle loads of 18,000 pounds or more, 20,000 pounds or more, and of 22,000 pounds or more for the prewar years (1936-37) and by years from 1942 to 1950. The frequency of these heavy axle loads increased year by year from the prewar period through 1948. The frequencies for 1949 were slightly lower than those found in 1948 yet they were higher than in any other previous year. The frequencies for 1950 are higher than those found in 1949, and the frequency of axles weighing 18,000 pounds

Figure 8.- Vumber of heary axle loads per 1.000 trucks and truck combinations (empties included) in the summer of
1942-50 and a prewar vear.

Table 9.-Heavy axle loads per 1,000 loaded and empty trucks and truck combinations on main rural roads, summer of 1950

Vehicle type	Eastern regions				Central regions					Western regions			United States average
	New England	Middle Atlantic	South Atlantic	Average	East North Central	$\begin{aligned} & \text { East } \\ & \text { South } \\ & \text { Central } \end{aligned}$	West North Central	West South Central	Average	$\underset{\text { Moun- }}{\text { tain }}$	$\begin{gathered} \mathrm{Pa-} \\ \text { cific } \end{gathered}$	Average	
Number per 1,000 Weighing 18,000 Pounds or More													
Single-unit trucks:													
2-axle, 4-tire...	0	9	0		8	(1)				0	0	0	
2 -axle, 6-tire.	46	74	22	47	15	35	9	17	18	25	32	29	29
3-axle..... Average.	107 28	179 46	63 12	111 27	39 9	43 18	20	78 7	41 9	154 13	26 15	${ }_{14}^{61}$	68 16
Truck combinations:													
Truck-tractor and semitrailer.	484	524	289	407	204	236	165	227	206	316	177	227	276
Truck and trailer.	0	345	0	169	403	0	160	${ }^{(2)}$	323	212	82	107	193
Average.	480	523	288	406	219	236	165	222	212	299	148	196	271
Average, all trucks and combinations	137	208	100	147	98	63	45	67	72	83	69	75	96
Comparative average, 1949........	124	195	99	140	89	50	50	51	63	57	37	48	86
Number per 1,000 Weighing 20,000 Pounds or More													
Single-unit trucks:													
2-axle, 4 -tire 2 -axle, 6 -tire	$3{ }^{0}$	5 47	0	${ }_{27}^{2}$	0 2	${ }^{(1)} 10$	${ }_{3}^{0}$	0 7	${ }^{(1)} 5$	${ }_{0}^{0}$	0	${ }_{0}^{0}$	12
3 -axle. .	43	73	11	38	26	4	12	0	16	72	7	25	25
Truck-tractor and semitrailer.													
Truck and trailer............	0	0	0	0	40	0	37	0	35	74	10	22	27
Average.	284	331	114	222	49	70	44	75	56	133	35	66	110
Average, all trucks and combinations	82	131	38	80	22	19	12	23	19	35	16	24	39
Comparative average, 1949.	73	118	46	78	27	18	12	18	20	26	6	16	38
Number per 1,000 Weighing 22,000 Pounds or More													
Single-unit trucks:													
${ }^{2}$-axle, 4 -tire. .					,	(1)			(1)				
${ }_{3}^{2}$-axaxle, 6 -tire .	19	57	2	15	${ }_{26}$	3	$\frac{1}{6}$	2 0	14	2 19	2	$\stackrel{2}{5}$	${ }_{13}^{6}$
A verage .	11	17	1	8	1	1		1	1	1	1	1	3
Truck combinations:													
Truck-tractor and semitrailer	129	204	38	117	15	18	10						
Truck and trailer.	0	0	0	0	12	0	34	0 30	18 18	43 64	$\frac{1}{5}$	24	11 50
Average.	128	203	38	116									
Average, all trucks and combinations Comparative average, 1949 .	39 38	80 65	13 18	42 39	7	5 5	3 8 8	9	6	111	2	9 6	18

${ }^{1}$ Less than 5 per 10,000 .
${ }^{2}$ Data omitted because of insufficient sample.
or more is higher than in 1948, the previous high figure for that weight. The frequencies of axle loads weighing 20,000 pounds or more and those weighing 22,000 pounds or more, however, are lower in 1950 than in 1948. Altogether, the leveling off in the frequency of the heavier axle loads may possibly indicate that, although gross loads have increased sharply, more attention is being given to proper load distribution and that there is better observance of the axleload restrictions.

Table 9 gives data concerning the number of heavy axle loads per 1,000 loaded and empty trucks and truck combinations of various types on the main rural roads by regions in 1950. Since no panel or pick-up trucks were found with axles weighing 18,000 pounds or more, there is no entry for these in the table though they are included in figuring the frequencies for all trucks and truck combinations.

Though the greatest frequency of heavy gross weights is in the Pacific region, as was shown in table 8, the lowest frequency of heavy axle loads is shared by that region with the West North Central region. In each of these two regions only three axles of 22,000 pounds or more were found in 1950 for each 1,000 vehicles weighed. By
far the greatest frequency of heavy axle loads was in the Middle Atlantic region and the next greatest in New England. In thesetwo regions the relatively high frequency is attributable mainly to the large number of two-axle truck-tractors pulling one-axle or two-axle semitrailers. The relative infrequency of heavy axles in the Pacific region, in the presence of a large proportion of heavy gross loads, indicates a better distribution of the loads over a larger number of axles.

Although the frequency of heavy gross loads has increased considerably and in all regions, as stated in connection with discussion of table 8, the trend in frequency of heavy axle loads followed an entirely different pattern. For the country as a whole, this was pointed out in the discussion of figure 8. The trend in frequency of heavy axle loads in the regions, likewise, is different from that of the gross loads. This is demonstrated by comparing the frequencies of heavy axle loads in 1950 with those in 1949 as shown for each weight class in table 9 and noting that the frequency of heavy axle loads in the different categories decreased in a number of cases, whereas table 8 shows that the frequency of heavy gross loads increased in all regions.

Loads Above Legal Limits

Table 10 shows the number of trucks and truck combinations of each type, per 1,000 such vehicles counted, empties included, that exceeded the legal axle, axle-group, or gross-weight limits in effect in the individual States in the summer of 1950 , and the number per 1,000 that exceeded these limits by various percentages. Comparative figures are given at the bottom of the table, for the Nation as a whole, for 1948 and 1949.

Loads in excess of State law were most frequent in the East South Central region where a decided increase generally was found in the number of overloaded threeaxle single-unit trucks and truck-tractor and semitrailer combinations. In this region, in 1949, 66 three-axle single-unit trucks of each 1,000 loaded and empty vehicles weighed exceeded one or more of the State weight limits; in 1950, 126 such vehicles exceeded these limits. In the same region 162 truck combinations per 1,000 such vehicles weighed in 1949 exceeded the legal limits while 437 exceeded these limits in 1950. After the East South Central region, where, of all loaded and empty trucks and truck combinations weighed in 1950, 115

Table 10.-Number of trucks and truck combinations, per 1,000 loaded and empty vehicles, that exceeded the permissible axle, axle-group, or gross-veight legal limits in effect in the States by various percentages (maximum) of overload summer of 1950

Table 11.-Number of axles, per 1,000 loaded and empty trucks and truck combinations, that exceeded the permissible axleload limit of 18,000 pounds recommended by the A.A.S.H.O. by various percentages of overload in the summer of 1950

${ }^{1}$ Less than 5 per 10,000 . ${ }^{2}$ Data omitted because of insufficient sample.

Region and type of vehicle	$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { per } \\ 1,000 \\ \text { over- } \\ \text { loaded } \end{gathered}$	Number per 1,000 overloaded more than-					
		$\begin{gathered} 5 \\ \text { per- } \\ \text { cent } \end{gathered}$	$\begin{gathered} 10 \\ \text { per- } \\ \text { cent } \end{gathered}$	$\begin{gathered} 20 \\ \text { per- } \\ \text { cent } \end{gathered}$	$\begin{gathered} 30 \\ \text { per- } \\ \text { cent } \end{gathered}$	$\begin{gathered} 50 \\ \text { per- } \\ \text { cent } \end{gathered}$	
New England: 2-axle, 4-tire							
2 -axle, 6-tire	45	37	31	19	11	3	
3 -axle.	97	56	49	14			
A verage, single-unit trucks	27	22	18	11	6	2	
Truck-tractor and semitrailer	477	394	306	145	62	8	
Truck and trailer Average, truck combinations	474	391	304	144	62	8	
Average, all trucks and combinations	135	111	87	43	19	3	
Middle Atlantic:							
2-axle, 4-tire (1) (1) (1) . (1)							
2-axle, 6-tire	69	56	47	28	15	7	
3 -axle.	173	125	79	51	51	11	
Average, single-unit trucks.	43	35	29	17	10	4	
Truck-tractor and semitrailer.	504	422	345	224	132	35	
Truck and trailer.	319	82					
A verage, truck combinations.	503	420	343	223	131	35	
Average, all trucks and combinations.	199	166	136	87	51	15	
South Atlantic: ${ }_{\text {2-axle, }}$ 4-tire ${ }_{\text {a }}$							
2-axle, 4-tire	(1)	${ }^{(1)}$					
2 -axle, 6 -tire	14	8	${ }^{6}$	2	(2)		
3-axle.	49	36	11	4			
Average, single-unit trucks		5	${ }^{3}$	7	${ }^{(2)}$		
Truck-tractor and semitrailer	261	184	123	47	16	2	
Average, truck combinations.	260	183	123	47	16	2	
Average, all trucks and combinations.	88	61	41	16	5	1	
East North Central:							
2-axle, ${ }^{\text {a axle, }}$ 6-tire.	9	4	2	1	(2)	${ }^{(2)}$	
3-axle.....	26	26	26	26	13		
Average, single-unit trucks.	5	3	2	1	${ }^{(2)}$	${ }^{(2)}$	
Truck-trailer and semitrailer	$\begin{aligned} & 171 \\ & 289 \end{aligned}$	102	61 58	18	5	${ }^{(3)}$	
Average, truck combinations	180	103	61	18	5	(2)	
Average, all trucks and combinations.	79	46	27	6	2	(2)	
East South Central:							
2-axle, ${ }_{\text {2-axle, }} 6$-tire	57			11	2		
3 -axle. .	112	39	39				
Average, single-unit trucks	30	20	13	5	1		
Truck-tractor and semitrailer	499	295	153	43	17	2	
Truck and trailer							
Average, truck combinations	499	295	153	43	17	2	
Average, all trucks and combinations.	128	78	42	13	4	(3)	
West North Central:2-axle, 4 -tire							
2 -axle, 6 -tire			3	1	${ }^{(2)}$		
3-axle....	23	12	12	6			
Average, single-unit trucks. Truck-tractor and semitrailer	155	${ }_{82}^{2}$	2 48	12	${ }^{(3)}$		
Truck and trailer	102	52	40	12	4	(ว)	
Average, truck combinations	155	82	48	12	4	(3)	
Average, all trucks and combinations	36	19	12	3	1	${ }^{(2)}$	
West South Central:2-axle, 4 -tire.							
2-axle, 6 -tire	19	12	8	3	1		
Average, single-unit trucks	7	5	3	1			
Truck-tractor and semitrailer.	214	128	82	35	16	2	
Truck and trailer.							
Average, truck combinations.	209	125	80	34	16	2	
Average, all trucks and combinations	63	38	24	10	4	1	
Mountain:							
2 -axle, 4-tire							
2-axle, 6-ti	30	17	10	6	2	10	
3 -axle.	151	127	117	19	19	10	
Average, single-unit trucks	15	10	7	3	1	1	
Average, truck combinations	217	139	83	33	17	1	
Average, all trucks and combinations	64	41	25	10	5		
Pacific:							
2 -axle, 6-tire	14	12	9	2	(2)		
3 -axle.	23	14	13				
Average, single-unit trucks	8		5	1	${ }^{(2)}$		
Truck-tractor and semitrailer	134	76	43	10	4	1	
Truck and trailer	129	67	15	1			
Average, truck combinations, Average, all trucks and com-						1	
binations...............	58	31	17	3	1	(${ }^{2}$	
United States average:							
A verage, single-unit trucks Truck-tractor and semitrailer Truck and trailer	269	185	127	40	${ }_{2}^{29}$	${ }_{6}^{1}$	
	174	185	127	5	4		
Average, truck combinations.Average, all trucks and com-	263	177	121	56	27	${ }_{6}$	
binations..........	93	63	44	20	10	3	
Comparative average, 1949	$\begin{aligned} & 75 \\ & 85 \end{aligned}$	$\begin{aligned} & 54 \\ & 63 \end{aligned}$	$\begin{aligned} & 37 \\ & 45 \end{aligned}$	$\begin{aligned} & 17 \\ & 23 \end{aligned}$	${ }_{11}^{8}$	1	

${ }^{1}$ Data omitted because of insufficient sample. ${ }^{2}$ Less than 5 per 10.000
able 12.-Number of trucks and truck combinations, per 1,000 loaded and empty vehicles, that exceeded the permissible axlegroup loads recommended by the A.A.S.H.O. by various percentages of overload in the summer of 1950

Table 13.-Number of trucks and truck combinations, per 1,000 loaded and empty vehicles, that exceeded any of the permissible load limits recommended by the A.A.S.H.O. by various percentages (maximum) of overload in the summer of 1950

Data omitted because of insufficient sample.

Table 14.-Number of trucks and truck combinations per 1,000 loaded and empty vehicles, in private and in for-hire operation, the exceeded various load limits by various percentages of overload in the summer of 1950 (United States average)

Type of vehicle	Private operation						For-hire operation					
	$\begin{aligned} & \text { Num- } \\ & \text { ber per } \\ & 1,000 \\ & \text { over- } \\ & \text { loaded } \end{aligned}$	Number per 1,000 overloaded more than-					$\begin{aligned} & \text { Num- } \\ & \text { ber per } \\ & \text { 1,over } \\ & \text { over- } \\ & \text { loaded } \end{aligned}$	Number per 1,000 overloaded more than-				
		$\stackrel{5}{\text { percent }}$	$\begin{gathered} 10 \\ \text { percent } \end{gathered}$	$\underset{\text { percent }}{20}$	$\begin{gathered} 30 \\ \text { percent } \end{gathered}$	$\begin{gathered} 50 \\ \text { percent } \end{gathered}$		$\stackrel{5}{\text { percent }}$	$\stackrel{10}{\text { percent }}$	$\stackrel{20}{\text { percent }}$	$\begin{gathered} 30 \\ \text { percent } \end{gathered}$	$\begin{gathered} 50 \\ \text { percent } \end{gathered}$

Number of Trucks and Truck Combinations per 1,000 Exceeding Permissible Axle, Axle -Group, or Gross-Weight Legal Limits of the Several States

Number of Trucks and Truck Combinations per 1,000 Exceeding the Maximum Axle -Group Loads Recommended by the A.A.S.H.O.

Number of Trucks and Truck Combinations per 1,000 Exceeding Any of the Maximum Motor-Vehicle Loads Recommended by the A.A.S.h.o.

exceeded one or more of the State weight limits, the Pacific region had the second highest rate of overloads (82) and in descending order of rates of violation were the Middle Atlantic (75), the East North Central (72), the Mountain (67), the West South Central (63), the West North Central (50), the South Atlantic (45), and the New England region (35).

A comparison of the frequency of loads exceeding State limits in 1950, shown in table 10, with similar data collected in the previous year, indicates that the frequency of these illegal loads has increased in all regions except the South Atlantic, in which this frequency decreased from 53 to 45 per 1,000 vehicles weighed. In all other regions increases in the rate of weight violations were found although the increases did not extend to the larger percentages of violation. For instance, in the East North Central region 63 vehicles of each 1,000 weighed in 1949 exceeded one or more of the weight restrictions by some amount, while in 1950, 72 vehicles per 1,000 exceeded the restrictions. At the same time, of those weighed in 1949, 27 exceeded the limits by more
than 10 percent, while in 1950 , only 23 exceeded these limits by more than 10 percent.

No panel or pick-up truck was weighed that exceeded any of the State weight regulations and this classification is omitted from tables $10-14$ although the number of such vehicles counted is included in the calculations.

Recommended Weight Limits

Uniform regulations concerning maximum allowable gross weights, axle weights, and axle-group weights have been adopted as a policy by the American Association of State Highway Officials and recommended to the State governments for adoption. ${ }^{7}$ This policy recommends that no axle shall carry a load in excess of 18,000 pounds and no group of axles shall carry a load in excess of amounts specified in a table of permissible weights based on the distance between the extremes of any group of axles.

[^4]In table 11 is shown the number of axl per 1,000 vehicles of various types that e ceeded the axle load limit of 18,000 poun recommended by the A.A.S.H.O. and t number exceeding these limits by vario percentages. This table emphasizes aga the high frequency of heavy axle loads the Middle Atlantic and New England gions. The number of axles per 1,000 hicles weighing more than the A.A.S.H. recommended limits was 199 in the Midc Atlantic and 135 in the New England, gion, while only 58 such axles for each 1,01 vehicles were found in the Pacific regi and 36 in the West North Central regic There were 87 axles per 1,000 vehicles the Middle Atlantic region exceeding 18,000 -pound recommended limit by percent or more, compared to only 3 ea in the Pacific and West North Centrl regions.

Table 12 shows the number of vehic of various types, per 1,000 vehicles, an axle-group load in excess of the lim recommended by the A.A.S.H.O. and excess of the limits by various percentag As might be expected from the large
zases of frequencies of heavy gross loads licated in figure 7, the number of veles of various types per 1,000 weighed at exceeded the A.A.S.H.O. recommentions increased in 1950 over the similar tes in 1949. For the country as a whole, each 1,000 loaded and empty trucks d truck combinations, 44 had axle groups 1950 weighing in excess of the recominded limits, 8 of which exceeded the limits more than 20 percent. In 1949, compable figures indicated that 28 trucks and lck combinations of each 1,000 exceeded \geqslant axle-group recommendation, 7 of which ceeded the limits by more than 20 percent. each 1,000 combinations weighed, 137 d axle-group loads weighing more than e recommended limits, of which 26 exzded the limits by more than 20 percent. 1e frequency of the excessive axle-group Ids in 1950 was about 57 percent more an in 1949.
It will be noted that a higher proportion the vehicles have excessive axle-group ads in the Pacific region than elsewhere, rereas table 11 shows a comparatively W frequency of heavy axle loads for that gion. This is because of the widespread e of multiple-axle vehicles in California id neighboring States.
As might be expected, many vehicles were loaded that they exceeded more than one commended weight limit, and some vecles had more than one axle loaded in cess of the recommended limit. Counting .ch vehicle only once, regardless of the umber of ways in which it exceeded any the A.A.S.H.O. recommended limits, table : was prepared to show the number of hicles per 1,000 of each type, both loaded Id empty, that exceeded the limits by vari-- is percentages. Those vehicles which exleded more than one provision of the commended restrictions were tabulated ly in the column showing the highest arcentage excess of any item.

In the United States as a whole, 91 vehicles out of every 1,000 were overloaded to some degree and 21 out of every 1,000 exceeded some one of the recommended provisions by more than 20 percent. The frequency of vehicles exceeding the recommendations by any amount in 1950 was 34 percent more than in 1949 , when 68 vehicles out of every 1,000 were overloaded to some degree. The frequency exceeding the recommendations by more than 20 percent in 1950 was 11 percent more than in 1949, when 19 vehicles out of every 1,000 vehicles exceeded some recommended limit to this extent.

State Limits Higher

In considering the data concerning the frequencies of axles or vehicles exceeding the State legal limits and the A.A.S.H.O. recommendations, especially the frequencies in the Middle Atlantic and New England regions, the fact should be recognized that higher limits generally are permissible under the State laws in these areas than are recommended by the Association. Axles exceeding the recommended limits by 25 percent may be within the legal limits of certain States, particularly in these two regions. Some States have no axle-group limits in their motor-vehicle restrictions, a fact that further complicates direct comparison of excess weights based on law and those based on the recommendations. Comparison of the frequency data for New England and the Middle Atlantic regions given in table 13 with those in table 10 shows that from one-third to onehalf of the vehicles exceeding one or more of the Association recommendations actually exceeded a State legal limit. For the United States as a whole, nearly threefourths of the vehicles exceeding one or more of the Association recommendations also exceeded a State legal limit.

Overloading of For-Hire Vehicles

The first part of table 14 shows separately the number of privately operated trucks and truck combinations and those operated for-hire, for each 1,000 such loaded and empty vehicles on main rural roads of the United States, that exceeded some State legal weight limit in 1950, and also comparative average figures for 1949. A comparison of the frequency of the excessively loaded vehicles in the two operation classifications shows, in striking manner, that type by type the for-hire vehicles generally are more frequently overloaded than are the privately operated ones. For instance, 8 of each 1,000 private single-unit trucks exceeded a State weight limit while 38 of each 1,000 for-hire trucks exceeded the same limits. Likewise, 170 of each 1,000 private truck combinations exceeded State weight limits, while 201 of each 1,000 for-hire combinations exceeded the same limits.

Of each 1,000 vehicles, the frequencies of all private and all for-hire trucks and truck combinations exceeding the State limits in 1950 were 33 and 159 , respectively, while in the previous year the corresponding frequencies were 26 and 131. In both years, there were nearly five times as many excess loads among the for-hire vehicles as among the privately operated ones.

The following parts of table 14 show frequencies of private and for-hire trucks and truck combinations exceeding the A.A.S.H. O. recommended limits for axle loads, for maximum axle-group loads, or for any of the recommended maximum loads. These sections of the table show, in general, as did the first section, that the relation of the frequency of overload of privately operated and for-hire vehicles is approximately the same when based on A.A.S.H.O. recommendations as when based on State legal limits.

The following publications are sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C. Orders should be sent direct to the Superintendent of Documents. Prepayment is required.

ANNUAL REPORTS

(Sec also adjacent column)

Reports of the Chief of the Bureau of Public Roads: 1937,10 cents. 1938,10 cents. 1939,10 cents.

Work of the Public Roads Administration:

$$
\begin{array}{lll}
1940,10 \text { cents. } & 1942,10 \text { cents. } & 1948,20 \text { cents } \\
1941,15 \text { cents. } & 1946,20 \text { cents. } 1949,25 \text { cents. } \\
1947,20 \text { cents. }
\end{array}
$$

Annual Report, Bureau of Public Roads, 1950. 25 cents.

HOUSE DOCUMENT NO. 462

Part 1 . . . Nonuniformity of State Motor-Vehicle Traffic Laws. 15 cents.
Part 2 . . Skilled Investigation at the Scene of the Accident Needed to Develop Causes. 10 cents.
Part 3 . . . Inadequacy of State Motor-Vehicle Accident Reporting. 10 cents.
Part 4 . . Official Inspection of Vehicles. 10 cents.
Part 5... Case Histories of Fatal Highway Accidents. 10 cents.
Part 6 . . The Accident-Prone Driver. 10 cents.

UNIFORM VEHICLE CODE

Act I.-Uniform Motor-Vehicle Administration, Registration, Certificate of Title, and Antitheft Act. 10 cents.
Act II.-Uniform Motor-Vehicle Operators' and Chauffeurs' License Act. 10 cents.
Act III.-Uniform Motor-Vehicle Civil Liability Act. 10 cents.
Act IV.--Uniform Motor-Vehicle Safety Responsibility Act.
Act V.-Uniform Act Regulating Traffic on Highways. 20 cents.
Model Traffic Ordinance. 15 cents.

MISCELLANEOUS PUBLICATIONS

Bibliography of Highway Planning Reports. 30 cents.
Construction of Private Driveways (No. 272MP). 10 cents.
Economic and Statistical Analysis of Highway Construction Expenditures. 15 cents.
Electrical Equipment on Morable Bridges (No. 265T). 40 cents.
Factual Discussion of Motortruck Operation, Regulation, and Taxation. 30 cents.
Federal Legislation and Regulations Relating to Highway Construction. 40 cents.
Financing of Highways by Counties and Local Rural Governments, 1931-41. 45 cents.
U.S. GOVERNMENT PRINTING OFFICE: 1951-951446

Guides to Traffic Safety. 10 cents.
Highway Accidents. 10 cents.
Highway Bond Calculations. 10 cents.
Highway Bridge Location (No. 1486D). 15 cents.
Highway Capacity Manual. 65 cents.
Highway Needs of the National Defense (House Document No. 249). 50 cents.

Highway Practice in the United States of America. 50 cents.
Highway Statistics, 1945. 35 cents.
Highway Statistics, 1946. 50 cents.
Highway Statistics, 1947. 45 cents.
Highway Statistics, 1948. 65 cents.
Highway Statistics, 1949. 55 cents.
Highway Statistics, Summary to 1945. 40 cents.
Highways in the United States (nontechnical). 15 cents.
Highways of History. 25 cents.
Identification of Rock Types. 10 cents.
Interregional Highways (House Document No. 379). 75 cents.
Legal Aspects of Controlling Highway Access. 15 cents.
Local Rural Road Problem. 20 cents.
Manual on Uniform Traffic Control Devices for Streets and Highways. 75 cents.
Mathematical Theory of Vibration in Suspension Bridges. $\$ 1.25$.
Principles of Highway Construction as Applied to Airports, Flight Strips and Other Landing Areas for Aircraft. \$1.75.
Public Control of Highway Access and Roadside Development. 35 cents.
Public Land Acquisition for Highway Purposes. 10 cents.
Roadside Improvement (No. 191MP). 10 cents.
Selected Bibliography on Highway Finance. 55 cents.
Specifications for Construction of Roads and Bridges in National Forests and National Parks (FP-41). \$1.50.
Taxation of Motor Vehicles in 1932. 35 cents.
Tire Wear and Tire Failures on Various Road Surfaces. 10 cents.
Transition Curves for Highways. \$1.25.
Single copies of the following publications are available to highway engineers and administrators for official use, and may be obtained by those so qualified upon request addressed to the Bureau of Public Roads. They are not sold by the Superintendent of Documents.

ANNUAL REPORTS

(See also adjacent column)
Public Roads Administration Annual Reports:

1943.

1944.
1945.

MISCELLANEOUS PUBLICATIONS

Bibliography on Automobile Parking in the United States. Bibliography on Highway Lighting.
Bibliography on Highway Safety.
Bibliography on Land Acquisition for Public Roads.
Bibliography on Roadside Control.
Express Highways in the United States: a Bibliography. Indexes to Public Roads, volumes 17-19, 22, and 23. Road Work on Farm Outlets Needs Skill and Right Equipment. Title sheets for Public Roads, volumes 24 and 25.

[^0]: ${ }^{2}$ Simultaneous consolidation of contiguous layers of unlike compressible soils, by Hamilton Gray. Transactions of the American Society of Civil Engineers, 1945, p. 1327. Discussion, p. 1345.

[^1]: ${ }^{3}$ Research on the construction of embankments, Public Roads, vol. 24, No. 1, July-Aug.-Sept. 192

[^2]: ${ }^{1}$ The States comprising each census region are indicated in table 1.

[^3]: ESee Traffic trends on rural roads, by T. B. Dimmick, PUblic Roads, vol. 26. No. 5. Dec. 1950; vol. 25, No. 12. Feb. 1950: vol. 25. No. 7, Mar. 1949: vol. 25, No. 3. Mar. 1948: vol. 24, No. 10, Oct.-Nov.-Dec. 1946; and Amount and characteristics of truclcing on rural roads, ${ }_{23}$, No. T. Lynch and T. B. Dimmick, Public Roads, vol. 23, No. 9, July-Aug.-Sept. 1943.

[^4]: ${ }^{7}$ Policy concerning maximum dimensions, weights, and speeds of motor vehicles to be operated over the highreays of the United States, adopted April 1, 1946, by the American Association of State Highway Officials: published by the Association in 1946.

